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1. Digital Ludeme Project



Evidence of Games

Lots of evidence of ancient board games: 
• Boards, pieces, dice, etc. 
• Last 5,000 years 
• Most cultures worldwide 

But almost never the rules! 

Q. Can we use modern computational 
     techniques to help improve our 
     understanding of ancient games?



Digital Ludeme Project

Five-year research project:  
• Funded by the ERC (€2m) 
• Maastricht University 

1. Model    
    Full range of traditional strategy games  
    in a single playable digital database  

2. Reconstruct   
    Missing knowledge about ancient games 

3. Map       
    Spread of games throughout history 



Scope

Traditional strategy games 

Traditional   
• No proprietary owner 
• Some historical longevity 
• Connection with local culture 

Strategy       
• Reward mental skill 
• Good decisions beat bad decisions 

Model the 1,000 most “important” traditional strategy games 
• Are documented 
• Impact on evolutionary record of games

XII Scripta board from Laodicaea, Turkey
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2. Modelling Games



Ludemes

A ludeme (“game meme”) is any game-related concept: 
• Rules 
• Equipment 

e.g. (tiling square) 
    
    (size 3) 

Atomic



Ludemes

Compound

A ludeme (“game meme”) is any game-related concept: 
• Rules 
• Equipment 

e.g. (tiling square) 
    
    (size 3) 

(board 
  (tiling square) 
  (size 3)  
) 



Ludemes

(game “?” 
  (players White Black) 
  (board 
    (tiling square) 
    (size 3)  
  ) 
  (move (add Own Empty)) 
  (end (win All (in-a-row 3))) 
) 

A ludeme (“game meme”) is any game-related concept: 
• Rules 
• Equipment 

e.g. (tiling square) 
    
    (size 3) 

(board 
  (tiling square) 
  (size 3)  
) 



Ludemes

(game “Tic-Tac-Toe” 
  (players White Black) 
  (board 
    (tiling square) 
    (size 3)  
  ) 
  (move (add Own Empty)) 
  (end (win All (in-a-row 3))) 
) 

A ludeme (“game meme”) is any game-related concept: 
• Rules 
• Equipment 

e.g. (tiling square) 
    
    (size 3) 

Simple but powerful!

(board 
  (tiling square) 
  (size 3)  
) 



Data Sets

Three core data sets: 

1. Games 
    • Known rules, ludeme descriptions, classification, etc. 
    • 600+ games (out of 1,000) 

2. Ludemes 
    • 500+ ludeme classes (move, from, hop, etc.) 
    • 500+ ludeme constants (Left, Enemy, Empty, etc.)  

3. Evidence 
    • Artefacts, literature, artworks, ethnographies, etc. 
    • 1,700+ entries so far 

To do: Correlate dispersal of ludemes with evidence



Ludii

Software for performing the analysis 

General game system 
• Playing 
• Analysing  
• Generating 

Currently >500 games 

Free download: 
• http://ludii.games 

http://ludii.games


3. Reconstructing Games



Reconstruction Task

Given: 
• Partial knowledge of equipment and rules 
• Historical/cultural context provided by evidence 

We want to: 
• Detect implausible reconstructions 
• Suggest more plausible reconstructions  



Example: Poprad Game

Poprad Game (Slovakia) 
• Tomb dated to 375AD 
• Germanic chieftain 

Equipment 
• 17x15/16 grid 
• 2 x Colours 
• 1 or 2 x Sizes? 

Ulrich Schädler (2018) 
• “An impossible task” 
• Ludii may help!



Example: Poprad Game

Model in ludemic form: 
• Describe known details 
• Identify degrees of freedom 

Not a single rule set! 
• Distribution of rule sets 

Improve the selection: 
• Bias rules by confidence 
• Filter out broken games 

(game "Poprad"   
        (players 2)   
        (equipment {  
            (board (rectangle 17 [15 | 16]))  
            [ 
                (piece "Disc" P1)  
                (piece "Disc" P2) 
                | 
                (piece "Disc" P1) 
                (piece "Disc1" P2 value:1) 
                (piece "Disc2" P2 value:2) 
                | 
                (piece "Disc1" P1 value:1) 
                (piece "Disc2" P1 value:2) 
                (piece "Disc1" P2 value:1) 
                (piece "Disc2" P2 value:2) 
            ] 
        })   
        (rules  
            [(start [*]) | *] 
            (play [(move Add (to (sites Empty))) | *]) 
            (end [*]) 
        ) 
    ) 



Evaluating Reconstructions

1. Historical Plausibility 
• Is rule set compatible with historical/cultural context? 
• Are concepts contemporary? 

2. Game Quality 
• Does it play well? 
• Is it interesting? 
• Is it likely to be transmitted?



Measuring Game Quality

How do we actually measure this? 

Computational Creativity provides a framework (Ritchie 2007): 

1. Novelty 
• Rule set is different to existing rule sets 

2. Typicality 
• Rule set provides a playable game 

3. Quality 
• Rule set provides an interesting game



Typicality
Definition of a game (based on Rules of Play, 2003):  

    A game is a fair contest with achievable outcomes. 

A rule set is typical if it is: 

1. Well-Formed 
• Conforms to the Ludii grammar 

2. Executable 
• Compiles to executable (Java) bytecode 

3. Correct 
• Runs without error 

4. Playable 
• Allows all players to make at least one move 

5. Gamelike 
• Provides a fair contest with achievable outcomes 



Gamelike

A rule set is gamelike if it is: 

1. Balanced 
• All players win  

2. Decisive 
• Most games produce a result (win/loss) 
   
3. Good Length 
• Not too short or too long 

Reliable, easy, fast to detect 
• Quickly eliminate large numbers of flawed games



Example: Mu Torere

Mu Torere (New Zealand, 18thC): 
• Living players 
• Full knowledge of rules 

    Move a piece of your colour 
    to the adjacent empty point, 
    if it is next to an enemy piece 
     



Example: Mu Torere

Mu Torere (New Zealand, 18thC): 
• Living players 
• Full knowledge of rules 

    Move a piece of your colour 
    to the adjacent empty point, 
    if it is next to an enemy piece 
     
Marcia Ascher (1987) survey: 
• Two historical accounts forget this rule 
• Win on first move: 
   – Unbalanced 
   – Decisive 
   – Bad game length



Game Quality

If pass typicality test then measure for quality 
• Much harder! 

Criteria: 
• Strategic depth 
• Uncertainty 
• Drama 
• Tension 
• Clarity 
• Skill/chance tradeoff 



Game Quality

Too simple Too hard

   Strategy Ladder 
Lantz et al. (AAAI’17)

If pass typicality test then measure for quality 
• Much harder! 

Criteria: 
• Strategic depth 
• Uncertainty 
• Drama 
• Tension 
• Clarity 
• Skill/chance tradeoff 



4. AI for Games



Automated Playtesting

Get AI agents to play against each other (“AI self-play”) 
1. AI agents A and B play 100 games 
2. Check for typicality 
3. Measure quality 

Time vs reliability: 

Weak (random) AI agents 
• Milliseconds per move 
• Unreliable results in seconds 

Strong(er) AI agents 
• Seconds per move 
• Reliable results in hours or days 



AI Approaches

1. Tree-Based Methods (1950s) 
• Exhaustive search 
• Requires heuristic knowledge 

2. Monte Carlo Methods (1930s) 
• Random sampling 
• No heuristic knowledge 

3. Monte Carlo Tree Search (2007) 
• Build tree from random sampling 
• Revolutionised game AI 



AI Approaches

4. Deep Learning (2016) 
• MCTS with neural networks 
• Superhuman playing strength 
• Hugely expensive 

Timeline:  
• AlphaGo beats Lee Sedol 4–1 (2016) 
• AlphaGo Zero beats AlphaGo 100–0 (2017) 
• AlphaZero learns Go, Chess, Shogi (2017) 

• Removing human expert knowledge improved strength! 



AI Strength

Stephen Tavener (2020) 
• 3x3 mini-game experiment 

3x3 Go 
• Win for P1 
• More search =  
   stronger result  



AI Strength

Stephen Tavener (2020) 
• 3x3 mini-game experiment 

3x3 Go 
• Win for P1 
• More search =  
   stronger result  

3x3 Chessline 
• Behaviour changes 
    based on AI strength 
• Winning strategy for P1 



Example: Hnefatafl

Hnefatafl “Viking Chess” 
• Scandinavia (c.800AD) 
• No original rules found 

Linnaeus (1732)  
• Saw Tablut, transcribed rules (in Latin) 

Smith (1811) 
• Translated into English 

Murray (1913) History of Chess 
• Assumed same rules for Hnefatafl 
• Became de facto

Carl Linnaeus (1707–1778)



Example: Hnefatafl
BUT… 

Smith made a   
bad translation of   
the king capture rule 

Original Latin                          Smith’s Version 
• “likewise the king”               • “except the king” 
• Flanked                                • Surrounded 
• Easy                                     • Hard! 

                                                [DEMO] 



But There’s More…

An intelligent player should find a winning strategy: 
1. Form a ring 
2. Constrict 

Bias swings towards attackers 



But There’s Even More…

An even more intelligent player should find a spoiling strategy: 
• Make “fortress” 
• Move king back and forth 

Neither player can win 

Copenhagen Rules 

Where to pitch AI level? 



Human-Level AI

We don’t want superhuman AI! 
• Draughts and Chess drawish at world champion level 
• Not the average human experience 

We don’t want random agents: 
• Not the average human experience 

“Human-level AI”: 
• Win 50% of games against top 50% of players 



Artificial Stupidity

We actually need to weaken the AI in some cases! 

e.g. Taikyoku Shogi (Japan, 15thC) 
• Most complex board game played by humans 
• 402 pieces each (209 types)  

1-ply lookahead will beat any human 

Must actually hobble the AI 



Conclusion

http://ludeme.eu 
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http://ludii.games 

Thank You 

Questions?


