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1. Digital Ludeme Project



Evidence of Games

Lots of evidence of ancient board games:

• Boards, pieces, dice, etc.

• Last 5,000 years

• Most cultures worldwide


But almost never the rules!


Q. Can we use modern computational

     techniques to help improve our

     understanding of ancient games?



Digital Ludeme Project

Five-year research project: 

• Funded by the ERC (€2m)

• Maastricht University


1. Model   

    Full range of traditional strategy games  
    in a single playable digital database 


2. Reconstruct  

    Missing knowledge about ancient games


3. Map      

    Spread of games throughout history




Scope

Traditional strategy games


Traditional  

• No proprietary owner

• Some historical longevity

• Connection with local culture


Strategy      

• Reward mental skill

• Good decisions beat bad decisions


Model the 1,000 most “important” traditional strategy games

• Are documented

• Impact on evolutionary record of games

XII Scripta board from Laodicaea, Turkey
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2. Modelling Games



Ludemes

A ludeme (“game meme”) is any game-related concept:

• Rules

• Equipment


e.g. (tiling square)

   

    (size 3)


Atomic



Ludemes

Compound

A ludeme (“game meme”) is any game-related concept:

• Rules

• Equipment


e.g. (tiling square)

   

    (size 3)


(board

  (tiling square)

  (size 3) 

)




Ludemes

(game “?”

  (players White Black)

  (board

    (tiling square)

    (size 3) 

  )

  (move (add Own Empty))

  (end (win All (in-a-row 3)))

)


A ludeme (“game meme”) is any game-related concept:

• Rules

• Equipment


e.g. (tiling square)

   

    (size 3)


(board

  (tiling square)

  (size 3) 

)




Ludemes

(game “Tic-Tac-Toe”

  (players White Black)

  (board

    (tiling square)

    (size 3) 

  )

  (move (add Own Empty))

  (end (win All (in-a-row 3)))

)


A ludeme (“game meme”) is any game-related concept:

• Rules

• Equipment


e.g. (tiling square)

   

    (size 3)


Simple but powerful!

(board

  (tiling square)

  (size 3) 

)




Data Sets

Three core data sets:


1. Games

    • Known rules, ludeme descriptions, classification, etc.

    • 600+ games (out of 1,000)


2. Ludemes

    • 500+ ludeme classes (move, from, hop, etc.)

    • 500+ ludeme constants (Left, Enemy, Empty, etc.) 


3. Evidence

    • Artefacts, literature, artworks, ethnographies, etc.

    • 1,700+ entries so far


To do: Correlate dispersal of ludemes with evidence



Ludii

Software for performing the analysis


General game system

• Playing

• Analysing 

• Generating


Currently >500 games


Free download:

• http://ludii.games


http://ludii.games


3. Reconstructing Games



Reconstruction Task

Given:

• Partial knowledge of equipment and rules

• Historical/cultural context provided by evidence


We want to:

• Detect implausible reconstructions

• Suggest more plausible reconstructions 




Example: Poprad Game

Poprad Game (Slovakia)

• Tomb dated to 375AD

• Germanic chieftain


Equipment 
• 17x15/16 grid

• 2 x Colours 
• 1 or 2 x Sizes?


Ulrich Schädler (2018)

• “An impossible task”

• Ludii may help!



Example: Poprad Game

Model in ludemic form:

• Describe known details

• Identify degrees of freedom


Not a single rule set!

• Distribution of rule sets


Improve the selection:

• Bias rules by confidence

• Filter out broken games


(game "Poprad"  

        (players 2)  

        (equipment { 

            (board (rectangle 17 [15 | 16])) 

            [

                (piece "Disc" P1) 

                (piece "Disc" P2)

                |

                (piece "Disc" P1)

                (piece "Disc1" P2 value:1)

                (piece "Disc2" P2 value:2)

                |

                (piece "Disc1" P1 value:1)

                (piece "Disc2" P1 value:2)

                (piece "Disc1" P2 value:1)

                (piece "Disc2" P2 value:2)

            ]

        })  

        (rules 

            [(start [*]) | *]

            (play [(move Add (to (sites Empty))) | *])

            (end [*])

        )

    ) 



Evaluating Reconstructions

1. Historical Plausibility

• Is rule set compatible with historical/cultural context?

• Are concepts contemporary?


2. Game Quality

• Does it play well?

• Is it interesting?

• Is it likely to be transmitted?



Measuring Game Quality

How do we actually measure this?


Computational Creativity provides a framework (Ritchie 2007):


1. Novelty

• Rule set is different to existing rule sets


2. Typicality

• Rule set provides a playable game


3. Quality

• Rule set provides an interesting game



Typicality
Definition of a game (based on Rules of Play, 2003): 


    A game is a fair contest with achievable outcomes.


A rule set is typical if it is:


1. Well-Formed

• Conforms to the Ludii grammar


2. Executable

• Compiles to executable (Java) bytecode


3. Correct

• Runs without error


4. Playable

• Allows all players to make at least one move


5. Gamelike

• Provides a fair contest with achievable outcomes




Gamelike

A rule set is gamelike if it is:


1. Balanced

• All players win 


2. Decisive

• Most games produce a result (win/loss)

  

3. Good Length

• Not too short or too long


Reliable, easy, fast to detect

• Quickly eliminate large numbers of flawed games



Example: Mu Torere

Mu Torere (New Zealand, 18thC):

• Living players

• Full knowledge of rules


    Move a piece of your colour

    to the adjacent empty point,

    if it is next to an enemy piece

    




Example: Mu Torere

Mu Torere (New Zealand, 18thC):

• Living players

• Full knowledge of rules


    Move a piece of your colour

    to the adjacent empty point,

    if it is next to an enemy piece

    

Marcia Ascher (1987) survey:

• Two historical accounts forget this rule

• Win on first move:

   – Unbalanced

   – Decisive

   – Bad game length



Game Quality

If pass typicality test then measure for quality

• Much harder!


Criteria:

• Strategic depth

• Uncertainty

• Drama

• Tension

• Clarity

• Skill/chance tradeoff




Game Quality

Too simple Too hard

   Strategy Ladder

Lantz et al. (AAAI’17)

If pass typicality test then measure for quality

• Much harder!


Criteria:

• Strategic depth

• Uncertainty

• Drama

• Tension

• Clarity

• Skill/chance tradeoff




4. AI for Games



Automated Playtesting

Get AI agents to play against each other (“AI self-play”)

1. AI agents A and B play 100 games

2. Check for typicality

3. Measure quality


Time vs reliability:


Weak (random) AI agents

• Milliseconds per move

• Unreliable results in seconds


Strong(er) AI agents

• Seconds per move

• Reliable results in hours or days




AI Approaches

1. Tree-Based Methods (1950s)

• Exhaustive search

• Requires heuristic knowledge


2. Monte Carlo Methods (1930s)

• Random sampling

• No heuristic knowledge


3. Monte Carlo Tree Search (2007)

• Build tree from random sampling

• Revolutionised game AI




AI Approaches

4. Deep Learning (2016)

• MCTS with neural networks

• Superhuman playing strength

• Hugely expensive


Timeline: 

• AlphaGo beats Lee Sedol 4–1 (2016)

• AlphaGo Zero beats AlphaGo 100–0 (2017)

• AlphaZero learns Go, Chess, Shogi (2017)


• Removing human expert knowledge improved strength!




AI Strength

Stephen Tavener (2020)

• 3x3 mini-game experiment


3x3 Go

• Win for P1

• More search = 

   stronger result 




AI Strength

Stephen Tavener (2020)

• 3x3 mini-game experiment


3x3 Go

• Win for P1

• More search = 

   stronger result 


3x3 Chessline

• Behaviour changes

    based on AI strength

• Winning strategy for P1




Example: Hnefatafl

Hnefatafl “Viking Chess”

• Scandinavia (c.800AD)

• No original rules found


Linnaeus (1732) 

• Saw Tablut, transcribed rules (in Latin)


Smith (1811)

• Translated into English


Murray (1913) History of Chess

• Assumed same rules for Hnefatafl

• Became de facto

Carl Linnaeus (1707–1778)



Example: Hnefatafl
BUT…


Smith made a  

bad translation of  

the king capture rule


Original Latin                          Smith’s Version

• “likewise the king”               • “except the king”

• Flanked                                • Surrounded

• Easy                                     • Hard!


                                                [DEMO] 



But There’s More…

An intelligent player should find a winning strategy:

1. Form a ring

2. Constrict


Bias swings towards attackers




But There’s Even More…

An even more intelligent player should find a spoiling strategy:

• Make “fortress”

• Move king back and forth


Neither player can win


Copenhagen Rules


Where to pitch AI level? 



Human-Level AI

We don’t want superhuman AI!

• Draughts and Chess drawish at world champion level

• Not the average human experience


We don’t want random agents:

• Not the average human experience


“Human-level AI”:

• Win 50% of games against top 50% of players




Artificial Stupidity

We actually need to weaken the AI in some cases!


e.g. Taikyoku Shogi (Japan, 15thC)

• Most complex board game played by humans

• 402 pieces each (209 types) 


1-ply lookahead will beat any human


Must actually hobble the AI




Conclusion

http://ludeme.eu
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http://ludii.games


Thank You 

Questions?


