The Digital Ludeme Project:

Modelling the Evolution of Traditional Games

Cameron Browne

DKE, Maastricht University

Game Al Working Group Seminar

CNRS, l'Université Paris Dauphine, 1 October 2018

Overview

Digital Ludeme Project

- ▶ Five-year research project
- ▶ European Research Council (ERC) Consolidator Grant (€2m)
- ▶ April 2018 2023

Host

- ▶ Games and AI Group
- ▶ Department of Knowledge Engineering (DKE)
- ▶ Maastricht University, Netherlands

Team

- ▶ Five researchers:
 - PI
 - 3 x RA
 - 1 x PhD

Established by the European Commission

Project

What It Is

- ▶ Computational study:
 - World's traditional games
 - Recorded human history

Objectives

- 1. Model: Full range of traditional games in a single playable database
- 2. Reconstruct: Missing knowledge about games more accurately
- 3. Map: Spread of games and assoc. mathematical ideas through history

Aim

▶ Improve our understanding of ancient games using modern AI

Motivation

Games and Culture

- ▶ All human cultures play games
- Cultural heritage:
 - Music, poetry, art, games, ...

Comparative Cultural Analysis

▶ Best (1976):

"Nothing is more persistent than the games of a people"

Evidence

- ▶ Games leave archaeological evidence:
 - Boards, pieces, etc.
- Very rarely rule sets

Problem

Knowledge Gap

▶ Huge gaps in our knowledge of ancient/early games

Recorded History

- ▶ Rule sets rarely written down
- ▶ Passed on by oral tradition

Modern Understanding

- ▶ Based on modern reconstructions:
 - historical/cultural analysis
 - not mathematical analysis
- Unreliable!

Lack of Information

Senet

- ▶ Egypt, c.3100BC
- Many sets found, no rules
- Hieroglyphic hints:
 - e.g. starting position
- ▶ Is it a game?

Special Symbols

Murray (1952): Entry points?

▶ Kendall (1978): Exit points?

Loss of Information

Royal Game of Ur

- ► Mesopotamia, 2600BC
- ▶ Tablets dated 177BC:
 - *B.M.*: One of 130,000
 - Paris: Destroyed 1940s
- Oldest recorded rules
- Interpreted by Finkel (1990)
- Themselves interpretations 2,500 years later
- ▶ Game played for 4,500 years?
- Longer than most civilisations or religions

Translation Errors

Hnefatafl

- ▶ Scandiavia, c.400BC
- No rules recorded

Linnaeus (1732)

- Saw Tablut played
- ▶ Recorded in travel diary in Latin

Smith (1811)

- ▶ Translated "...likewise the king..." as "...except the king..."
- ▶ Biased rule set, unlikely to be accurate

Murray (1913)

- ▶ Published biased rules, became *de facto*
- Corrected ever since

Lack of Analysis

Assos (Turkey)

- ▶ Game board ~300BC
- ▶ Assumed Small Merels

Does Small Merels Work?

- ▶ Blünheim rules (1918)
- ▶ Became *de facto*
- ► Mathematical analysis (2014):
 - Prone to cycles!
- Is this a plausible rule set?
- ▶ Do cycles ruin the game?

Transcription Errors

Mu Torere

- Maori, New Zealand, 18thC
- ▶ Opening rule:

The first piece moved must be adjacent to an enemy piece.

Marcia Ascher (1987)

- ▶ Two accounts neglect this rule
- ▶ Game ends after one move!

Straffin (1995)

- ▶ Mathematical solution
- ▶ 46 states

Loss of Evidence

Hounds and Jackals

▶ Egypt, ~2000BC

Azerbaijan Carving

- ► Azerbaijan, ~2000BC
- ▶ Game? Calendar? Art?
- ▶ Evidence of cultural contact?

Walter Crist (US Anthropologist)

- ▶ 2016 visit:
 - Site analysis
 - Notches for canopy
- ▶ 2017 visit:
 - Housing development
- ▶ Evidence is fragile!

Cultural Contact?

Comparitive Cultural Analysis

- ▶ Patolli (Mexico)
- ▶ Pachisi (India)

Tyler (1879)

▶ Evidence of early contact

Erasmus (1950)

- ▶ Coincidence
- ▶ "Limitation of Possibilities"

Murray (1952)

▶ Coincidence unlikely

▶ How to decide?

Partial Evidence

Qingzhou City (China)

- ▶ Tomb dated to 300BC
- ▶ Board + 14-sided die
- ▶ Assumed to be Liubo

- ▶ Is it even a game?
 - Should be able to determine

Partial Evidence

Poprad (Slovakia)

- ▶ Tomb dated to 375AD
- ▶ Germanic chieftain

What Game?

- No precedent in Europe
- ▶ Board:
 - 17x15/16 grid (not Go!)
- ▶ Pieces:
 - 2 x Colours
 - 1 or 2 x Sizes?

Reconstruction

- ▶ Ulrich Schadler (2018): "An impossible task"
- Currently no tools to help

Research Problem

Problem

- Knowledge of ancient games is unreliable:
 - Based on (flawed) reconstructions
- No digital tools to help historians

Solution

- ▶ Game AI mature research field
- Not applied to ancient games (yet)

Approach

- Model games digitally
- ▶ Maximise reconstructions for:
 - Mathematical quality (as games)
 - Historical authenticity (as cultural artefacts)

Digital Archæoludology

Digital Archæoludogy

- New field of research
- Many research strands
- Single unified approach

- Modern comput. techniques:
 - Analysis and reconstruction
 - Incomplete descriptions

Scope

Traditional Games of Strategy

- ▶ *Traditional*: No known inventor or proprietary owner
- Strategy: Reward strategic planning + mental skill

e.g. board games, tile, card, dice, math. games, etc.

Range

- ►~3500BC ~1900AD
- ▶ 1,000 most influential games (plus variants)
- ▶ Further back, less we know

Methodology

1. Model

2. Reconstruct

3. Map

Methodology

1. Model

LUDII Game System Game Ludeme Game Ludeme Game Ludeme Ludeme Game

2. Reconstruct

3. Map

Ludemes

Ludemes

- ▶ "Game memes"
- Units of game-related information
- ▶ Building blocks (DNA) of games
- ▶ PhD thesis (2009)

Practical Benefits

- ▶ Compact, comprehensible
- ▶ Editable, evolvable
- Human-readable
- **▶** Efficient

Theoretical Benefits

- Encapsulate concepts
- **Label concepts**

Allows full range of games

Stanford GDL

- ▶ Standard for GGP
- Academic use
- Verbose
- ▶ Inefficient
- No encapsulation

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))</pre>
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(\leq (diagonal ?x) (true (cell 1 1 ?x))
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\leq open (true (cell ?m ?n b))) (\leq (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

Stanford GDL

- ▶ Standard for GGP
- Academic use
- Verbose
- ▶ Inefficient
- No encapsulation

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))</pre>
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(\leq (diagonal ?x) (true (cell 1 1 ?x))
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\leq open (true (cell ?m ?n b))) (\leq (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

Stanford GDL

- ▶ Standard for GGP
- Academic use
- Verbose
- ▶ Inefficient
- No encapsulation

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(<= (row ?m ?x) (true (cell ?m 1 ?x))</pre>
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))</pre>
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(\leq (diagonal ?x) (true (cell 1 1 ?x))
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(\leq (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\leq open (true (cell ?m ?n b))) (\leq (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

Stanford GDL

- ▶ Standard for GGP
- Academic use
- Verbose
- ▶ Inefficient
- No encapsulation

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(\leq (row ?m ?x) (true (cell ?m 1 ?x))
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))</pre>
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(\leq (diagonal ?x) (true (cell 1 1 ?x))
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\leq open (true (cell ?m ?n b))) (\leq (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

Stanford GDL

- ▶ Standard for GGP
- Academic use
- Verbose
- ▶ Inefficient
- No encapsulation

```
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))</pre>
    (true (control ?w)))
(<= (legal white noop) (true (control black)))</pre>
(<= (legal black noop) (true (control white)))</pre>
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))</pre>
    (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))</pre>
    (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))</pre>
    (true (cell ?m ?n b)) (or (distinct ?m ?j)
    (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))</pre>
(<= (next (control black)) (true (control white)))</pre>
(\leq (row ?m ?x) (true (cell ?m 1 ?x))
    (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))</pre>
    (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))</pre>
    (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(\leq open (true (cell ?m ?n b))) (\leq (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal white 0) open (not (line x)))</pre>
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))</pre>
(<= (goal black 0) open (not (line o)))</pre>
(<= terminal (line x))</pre>
(<= terminal (line o))</pre>
(<= terminal (not open))</pre>
```

LUDII

LUDII General Game System

- ▶ Based on earlier LUDI system (2009)
- ▶ Play, evaluate, reconstruct
- ▶ Full range of traditional games

Ludeme Library

- ▶ Each ludeme is a Java class (*.java)
- ▶ Meaningful name
- ▶ Tagged with math. keywords

Game Database

- ▶ Each game is a *s-expression* (*.txt):
 - Ludeme tree
 - Compiles to executable Java bytecode
- ▶ Tagged with relevant historical data: where, when, ...

Class Grammar

LUDII Class Grammar

- ▶ EBNF-style grammar
- ▶ Derived automatically from ludeme code base
- ▶ Each class generates a rule, e.g.

Benefits

- Code sync'd to grammar
- Hides implementation
- ▶ Full access to functionality
- ▶ Extensible!

LUDII Portal

LUDII Public Portal

- Access games in the database:
 - Play Al agents
 - Play other users
 - Evaluate rule sets
 - Al tournaments
- <u>www.ludii.games</u>
- Release:
 - Mid-2019?

Game Evaluation

Game Preferences

▶ Vary by culture, period, individual, etc.

No universal indicators

Robust Flaw Detection

- ▶ Bias
- ▶ Drawishness
- ▶ Game length

Can eliminate flawed reconstructions... but is that enough?

Strategic Potential

Traditional Strategy Games

Strategy is important

Strategy Ladder

- ▶ Lantz et al. (2017)
- Strategic potential

Interestingness

- ▶ Allis *et al.* (1991):
 - "intellectual challenge neither too simple nor too hard"

Lantz et al. (2017) AAAI'17

Plausible AI

Playing Strength

- ▶ Don't need superhuman Al... don't want superhuman Al!
- Skewed experience of games:
 e.g. Checkers drawish at championship level

Plausible AI

- Average-strong human level
- Moves that human players would plausibly make
- ▶ 50% win rate against top 50% of players?

Aim

- Realistic experience of games as actually played
- Recognise strategic potential

Move Planning

MCTS

- ▶ Good baseline
- ▶ Playouts biased by features:
 - Geometric piece patterns
- Learnt through self-play, e.g. Hex bridges

Geometry-Independent

- ▶ Based on graph adjacency
- ▶ Transfer to other bases
- Succinct

```
// e f
// f +
"All:rot=D:val=0.5:act={-1}:
  pat=<e{},f{0},f{-2},-{-1}>"
```


Feature Geometry

Geometry

- ▶ Relative cell locations
- ▶ Steps through adjacent cells (turtle steps)

Example

► Knight move: $\{f, f, r, f\} = \{0, 0, 1\}$

Advantages

- ▶ Transfer between geometries/games
- **▶** Efficient
- ▶ Small memory footprint
- ▶ Human-comprehensible descriptions?

$$P_k = \{0,0,1\}$$

Features Encode Strategies

Hypothesis: Features indicate strategic potential of game

Why Not AlphaZero?

Resources

- ▶ AlphaZero trained on 5,000 TPUs = \$25m hardware
- Weeks of supercomputer time per game

Memory

- NN memory footprint:
 - MBs per game

Need

- Not needed for "plausible Al"
- Not how games were played!
- Doesn't reveal strategies

Practicalities

Game Count

- ▶ 1,000 source games
- ▶ Several variants each
- ▶ Feature learning: hundreds of feature combinations per variant
- Description: hundreds more variants per game
- > 1 million rule sets to evaluate

Evaluation

- Requires full playouts:
 - Parallel trials
 - 1-2 second per move = 1-2 minute per game

Range of Games

State Complexity

- ► Mu Torere: 46
- ► Go: $\sim 1.74 \times 10^{172}$

- ▶ How to compare?
 - Mu Torere effectively 0 compared to Go

- Strategic potential:
 - Large difference
 - Rather than astronomical difference

Methodology

1. Model

2. Reconstruct

3. Map

Phylogenetics

Phylogenetics

- ▶ Evolutionary history of organisms
- ▶ Family tree

Ancestral State Reconstruction

▶ Ancestral traits with confidence

Example

- ▶ Female song in songbirds
- ▶95% confidence female ancestor sang

Powerful Odom et al. (2014) Nature

▶ Can be used to reconstruct games?

Missing Links

Induce games for which no evidence exists?

Genetics of Games

Games

- ▶ Ludemes = genotype = form
- ▶ Play = phenotype = function

Good

- Genotype/phenotype separation:
 - Needed for phylogenetic analysis
- Games highly evolvable (PhD, 2009)
- Analogies for most genetic properties

Bad

- Games combine rules arbitrarily:
 - Horizontal gene transfer (vertical assumed for phylogen. analysis)
 - No time consistency (skip generations)
- No genetic material! No genealogy

Game Distance

Genetic Distance

Needed for phylogenetic analysis

Game Distance

- ▶ Edit distance between ludeme trees
- Weighted by importance of each ludeme

Homologies

- Different ludemes give same behaviour
- ▶e.g. Knight move:
 - 'L' step
 - 3 orthogonal steps
 - Orthogonal step + diagonal step
 - Closest cell not in orthogonal or diagonal line
 - Closest non-adjacent cell of different colour, etc.

Horizontal Influence Maps

Horizontal Influence Maps

- Valverde & Sole (2015)
- Different view of relationships between data

Benefits

▶ Doesn't rely on vertical gene transfer

Valverde & Sole (2015) JRSI

Domain

- Programming languages
- ▶ Similar: Mathematical domain, no genetic material
- ▶ Dissimilar: Tendency towards complexity

Methodology

1. Model

2. Reconstruct

3. Map

Cultural Mapping

Project Data

- ▶ Ludemes: Mathematical concepts
- ▶ *Games*: Historical data (*where, when,* ...)

Mathematical Profile

For each game, ludemes provide a mathematical profile

Ludemic Spread

- Correlate ludemes with games
- Chart their spread

How to locate games culturally?

GeaCron

GeaCron

- ▶ Geo-temporal DB
- Yearly maps
- ▶3,000BC —
- ▶2,000 cultures

Services

- ▶ Locate by GPS+Date:
 - Culture
 - Civilisation
 - Country/nation/state
 - Landmarks (e.g. towns)
 - Historical event

Viking route from Norway to Paris (845AD)

Historical profile ⇒ cultural location

Cultural Spread

Correlate Spread of Games/Ideas

- ▶ Trade routes
- ▶ Exploration routes
- ▶ Diasporas

Silk Road trade routes (Fertile Crescent)

MONGOLIA

PERSIA Taxila

ARABIA

Colonial trade routes

Forensic Game Reconstruction

Given

```
(board (rect 17 16)) / (board (rect 17 15))
(players White Black)
(pieces (disc White) (disc Black))
(pieces (disc White 1) (disc White 2) (disc Black 1) (disc Black 2))
```

Find

```
(start...) (play...) (end...)
```

Search

- Known ludemes
- ▶ Plausible rule sets

Maximise

- ▶ Game quality: strategic potential
- ▶ Historical authenticity: *cultural location*

Poprad game (again)

"Impossible" task ⇒ Difficult task

Workplan

UTPUTS

Ludii

Sympos. 1

Sympos. 2

Conference

Exhibition Other

➤ GGP system

- ➤ Proceedings
- ➤ Proceedings
- ➤ Proceedings

- ► Ludemes
- ➤ Games + Reconstructions
- ➤ Manuals
- ➤ Web site
- ➤ AI methods

- = Family Tree/Network
- ASR = Ancestral State Reconstruction
- ML = Missing Links

- ➤ Catalogue
- ➤ Interactive Maps
- ➤ Public lectures
- ➤ Artefacts
- ▶ Displays

- ► 45+ papers
- ➤ 3 books
- ▶ 2 PhD theses
- ➤ Patents?

Team

Principal Investigator

▶ Cameron Browne

Computational

Postdoc

▶ Eric Piette

PhD

▶ Dennis Soemers

Cultural

Postdoc

- ▶ Hiring in 2019
- ▶ Historian/Anthropologist
- Advise on: games, data, collation

Postdoc

Matthew Stephenson

Conclusion

http://www.ludeme.eu

Thank You!

Cultural Context

Birrguu Matya

- ▶ Australian Aboriginal, 19thC?
- ▶ Traditional game?

Problems

- No precedent
- ▶ At odds with cultural philosophy
- ▶ "Invented tradition" (Hobsbawm, 2000)

Meggitt (1958)

- German missionary
- ▶ Afghan camel herders

▶ How to identify such outliers?

