
DKE Lunchtime Lecture

 Digital Ludeme Project
Modelling the Evolution of Traditional Games

Cameron Browne
Eric Piette
Dennis Soemers

14/11/2018

Outline

Digital Ludeme Project:
• What it is
• What we are doing
• What we hope to achieve

Eric Piette:
• LUDII general game system

Dennis Soemers:
• Learning strategic features

Context

Games are ubiquitous throughout recorded human history:
• All humans play games
• All human cultures have their own games

Potential source of insight into cultural past:
• Don’t actually know much 
 about ancient games!

Modern understanding
based on (unreliable)
modern reconstructions

Evidence or Coincidence?

Pachisi
• Traditional game of India
• Invented 6th–16thC

Evidence or Coincidence?

Pachisi
• Traditional game of India
• Invented 6th–16thC

Patolli
• Ancient Mexico
• Played c.200BC

Different rules...
Same board?

Evidence or Coincidence?

Tyler (1879)
• Evidence of early contact

Erasmus (1950)
• “Limitation of Possibilities”
• Coincidence

Murray (1952)
• Assume coincidence 
 as a last resort

No mathematical models,  
no software tools

Problem

Ancient games:
• Much archaeological evidence (boards, pieces, etc.)
• Almost no record of rules

Writing rare skill until recently:
• Games less important,
 last thing to be recorded

Passed on by oral tradition:
• Huge variety today
• Original rule sets lost

Missing Knowledge

Senet
• Ancient Egypt
• c.3100BC

Many sets found:
• e.g. Tutankhamen’s
• Pristine condition
• No rules!

Is it even a game?

Missing Knowledge

Hints from hieroglyphic art:
• Two players
• Two colours
• Starting position

Special symbols on board:
• Entry points?
• Exit points?

Dozens of reconstructions:
• No mathematical models,
 no software tools

Bridging the Gap

Traditional game studies:
• Wealth of historical analysis
• Little mathematical analysis

Modern game AI studies:
• Huge surge in recent research
• Little interest in historical context

Almost no overlap:
• Seek to bridge this gap

Digital Ludeme Project

• Five-year research project
• European Research Council:
 – ERC Consolidator Grant (€2m)
• Run at DKE since April 2018

Team:
• 1 x PI (me)  
• 3 x RAs (Eric, Matthew, ?) 
• 1 x PhD (Dennis)

Computational study of the world’s
traditional strategy games throughout
recorded human history

D

L

P

igital
udeme
roject

Objectives

1. Model Full range of traditional strategy games  
 in a single playable digital database

2. Reconstruct Missing knowledge about ancient  
 games more accurately

3. Map Spread of games (and associated mathematical 
 ideas) throughout recorded history

Aim: To improve our understanding of traditional 
 games using modern AI techniques

Scope

Traditional Games of Strategy
• Traditional: No known inventor or proprietary owner
• Strategy: Mental skill, e.g. board, tile, card, etc.

 Range: ~3100BC ... ~1900AD

• 1,000 most influential examples (+ variants, + recon.s…)
• Evaluation of up to 1 million rule sets

4000 3000 2000 1000 0 1000 2000BC BC BC BC AD AD AD

Ancient Early Modern

Recorded Human History

Ludemes

• Game “memes”:
 – Units of game-related information 
 – Building blocks (DNA) of games
• Encapsulate key concepts

Ludemes

• Game “memes”:
 – Units of game-related information 
 – Building blocks (DNA) of games
• Encapsulate key concepts

e.g. (tiling square)

 (size 3 3)

Ludemes

• Game “memes”:
 – Units of game-related information 
 – Building blocks (DNA) of games
• Encapsulate key concepts

e.g. (tiling square)

 (size 3 3)

 (board
 (tiling square)
 (shape square)
 (size 3 3)
)

Ludemes

• Game “memes”:
 – Units of game-related information 
 – Building blocks (DNA) of games
• Encapsulate key concepts

e.g. (tiling square)

 (size 3 3)

 (board
 (tiling square)
 (shape square)
 (size 3 3)
)

(game Tic-Tac-Toe
 (players White Black)
 (board
 (tiling square)
 (shape square)
 (size 3 3)
)
 (end (All win (in-a-row 3)))
)

Stanford GDL

Stanford University:
• Game Description 
 Language (GDL)
• Academic standard

Explicit Instructions:
• Verbose
• Difficult
• Inefficient
• Not that general
• No encapsulation!

(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
 (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
 (true (cell ?m ?n b)) (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
 (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
 (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

Comparison
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
 (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
 (true (cell ?m ?n b)) (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
 (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
 (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

(game Tic-Tac-Toe
 (players White Black)
 (board
 (tiling square)
 (shape square)
 (size 3 3)
)
 (end (All win (in-a-row 3)))
)

Comparison
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
 (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
 (true (cell ?m ?n b)) (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
 (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
 (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

(game Tic-Tac-Toe
 (players White Black)
 (board
 (tiling square)
 (shape square)
 (size 5 5)
)
 (end (All win (in-a-row 3)))
)

Comparison
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
 (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
 (true (cell ?m ?n b)) (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
 (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
 (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

(game Tic-Tac-Toe
 (players White Black)
 (board
 (tiling hexagonal)
 (shape square)
 (size 7 7)
)
 (end (All win (in-a-row 3)))
)

Comparison
(role white) (role black)
(init (cell 1 1 b)) (init (cell 1 2 b)) (init (cell 1 3 b))
(init (cell 2 1 b)) (init (cell 2 2 b)) (init (cell 2 3 b))
(init (cell 3 1 b)) (init (cell 3 2 b)) (init (cell 3 3 b))
(init (control white))
(<= (legal ?w (mark ?x ?y)) (true (cell ?x ?y b))
 (true (control ?w)))
(<= (legal white noop) (true (control black)))
(<= (legal black noop) (true (control white)))
(<= (next (cell ?m ?n x)) (does white (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n o)) (does black (mark ?m ?n))
 (true (cell ?m ?n b)))
(<= (next (cell ?m ?n ?w)) (true (cell ?m ?n ?w))
 (distinct ?w b))
(<= (next (cell ?m ?n b)) (does ?w (mark ?j ?k))
 (true (cell ?m ?n b)) (or (distinct ?m ?j)
 (distinct ?n ?k)))
(<= (next (control white)) (true (control black)))
(<= (next (control black)) (true (control white)))
(<= (row ?m ?x) (true (cell ?m 1 ?x))
 (true (cell ?m 2 ?x)) (true (cell ?m 3 ?x)))
(<= (column ?n ?x) (true (cell 1 ?n ?x))
 (true (cell 2 ?n ?x)) (true (cell 3 ?n ?x)))
(<= (diagonal ?x) (true (cell 1 1 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 3 ?x)))
(<= (diagonal ?x) (true (cell 1 3 ?x))
 (true (cell 2 2 ?x)) (true (cell 3 1 ?x)))
(<= (line ?x) (row ?m ?x))
(<= (line ?x) (column ?m ?x))
(<= (line ?x) (diagonal ?x))
(<= open (true (cell ?m ?n b))) (<= (goal white 100) (line x))
(<= (goal white 50) (not open) (not (line x)) (not (line o)))
(<= (goal white 0) open (not (line x)))
(<= (goal black 100) (line o))
(<= (goal black 50) (not open) (not (line x)) (not (line o)))
(<= (goal black 0) open (not (line o)))
(<= terminal (line x))
(<= terminal (line o))
(<= terminal (not open))

(game Tic-Tac-Toe
 (players White Black)
 (board
 (tiling hexagonal)
 (shape square)
 (size 7 7)
)
 (end (All win (no-moves)))
)

Ludemic Model

Simple:
• Compact (QR codes), human-readable

Powerful:
• General, extensible, evolvable, efficient

Useful:
• Encapsulates key concepts
• Labels key concepts

Good for design:
• Allows full range of traditional strategy games

LUDII

LUDII general game system:

1. Ludeme library
 • Each ludeme is a Java class
 • Gives each ludeme a name
 • Tag with math. concepts

2. Game Database
 • Game descriptions
 • Historical data

[Eric to discuss]

Ludeme

Ludeme

Ludeme

. . .
Ludeme

Game

Game

Game

Game

. . .
+

Historical
Data

+
Mathematical

Data

LUDII Game System

Ludeme 
Library:

Game  
Database:

Genetic Model of Games

Ludemes = form (genotype)
Play = emergent behaviour = function (phenotype)

Problem:
• No genetic material = no genetic distance

Solution:
• Use ludemic distance instead:
 – Edit distance between ludeme trees
 – Number of steps required to change
 one game into another

Computational Phylogenetics

“Family tree” of
 traditional games:
• Principles similar 
 to linguistics

Ancestral State
Reconstruction:
• Probabilistic recon.  
 of ancestral traits

Missing links?
• Games that may  
 have existed

Phlyogenetic analysis of Austronesian societies
 Currie (2010) Nature

Horizontal Influence Maps

Problem:
• Classical phylogenetics assumes 
 vertical gene transfer

• Games spread through horizontal 
 gene transfer (ethnogenesis):
 – Rules from any source
 – Rules from any time
 – Can’t prove origins (parents)

Solution:
• Horizontal Influence Maps (HIM)
• Different view of relationships between data

HIM of programming languages
Valverde & Sole (2015) JRSI

Historical Authenticity

Given a rule set

How likely is it to have occurred:
• In that time?
• In that place?
• In that culture?

e.g. Birrguu Matya
• Australian Aboriginal
• Traditional? No!
• Obvious outlier
• “Invented tradition”

Game Quality

Quality of reconstructed rule sets as games:
• No universal indicator

Player preferences change:
• Period, culture, individual

Can identify flawed rule sets:
• Biased, drawish, too short or long

Translation Errors

Hnefatafl
• Scandiavia, c.400BC
• No rules found

Linnaeus (1732)
• Saw Tablut played
• Recorded in travel diary (in Latin)

Smith (1811)
• Translated into English

Murray (1913) History of Chess
• Published rules, became de facto

Translation Errors

BUT...

Smith’s translation
had a critical error:
• “…likewise the king…”
 not
• “…except the king…”

King almost impossible to capture:
• King’s side always wins
• Biased game, corrected ever since
• Not how it was played

Transcription Errors

Mu Torere
• Maori, New Zealand, 18thC
• Special opening rule

Some historical accounts  
omit this rule:
• Game ends after 1 move
• Not how it is played

Strategic Potential

Flaws easy to detect: game quality harder to define

Hypothesis:
• Strategic potential is a
 universal indicator 
 of quality

Strategy ladder:
• Not too easy
• Not too hard
• Linear accumulation
 of strategies

[Dennis to discuss]

Too simple Too hard

Lantz et al. (2017) AAAI’17

Putting It All Together

Improve reconstructions by optimising rule sets:

1. Define known constraints (equipment, rules, etc.)

2. Evolve using plausible ludeme combinations

3. Eliminate flawed rule sets

4. Maximise for:
 1. Historical authenticity
 2. Game quality

Forensic Game Reconstruction

Poprad Game (Slovakia)
• Tomb dated to 375AD
• Germanic chieftain

Board:  
• 17x15/16 grid (not Go!)
Pieces:  
• 2 x Colours 
• 1 or 2 x Sizes?

Ulrich Schadler (2018)
• “An impossible task”
• LUDII will turn impossible task into a difficult one

Cultural Mapping

Map spread of games/ludemes throughout human history

Correlate with:
• Trade routes
• Explor. routes
• Diasporas

Silk Road Trade Routes

Very important in history games!

• Fertile crescent:
 – Egypt
 – Mesopotamia
• India
• Asia

Can we track
spread of
early games?

GeoCron

Queriable
geo-temporal
database

Yearly maps:
• 3,000BC—today
• 2,000 cultures

Provide GPS+date:
• Culture/civilisation
• Country/nation/state
• Landmarks
• Historical events (+ routes!)

GeoCron: Viking route from Norway to Paris (845AD)

Historical profile ⇒  
Cultural location

Games and Mathematics

Tagging ludemes with underlying mathematical concepts:
• Geometry
• Logic
• Algebra
• Arithmetic

Map spread of games/ludemes

Can we also correlate spread  
of associated mathematical
ideas throughout history?

Rithmomachia (11thC)

Digital Archæoludology

Digital Archæoludogy:
• New field of research
• Several research strands
• Single unified approach

Modern comput. techniques:
• Analysis and reconstruction
• Incomplete descriptions

Digital Archæoludology

Mathematical Computational

Cultural ArchæologicalHistorical

Preserving Knowledge

Royal Game of Ur
• Mesopotamia, 2600BC

Tablets dated 177BC:
• B.M.: One of 130,000
• Paris: Destroyed 1940s

Oldest recorded rules:
• Found by Finkel (1990)
• Lucky find!
• Losing game evidence
 all the time

Preserving Knowledge

Hounds and Jackals
• Egypt ~2000BC

Azerbaijan Carving
• Azerbaijan ~2000BC : Game? Art?

Walter Crist (US):
• Evidence of cultural contact
• Site destroyed last year 
• Not published

Aim: Help preserve cultural  
 heritage of games

Workplan

Year 1 Year 2 Year 3 Year 4 Year 5Year 1 Year 2 Year 3 Year 4 Year 5

MODEL RECONSTRUCT

MAP

MODEL RECONSTRUCT

MAP

L SystemUDII

Grammar GGP Quality Transfer Explain

Ludeme Library

Metadata

Game Database

Reader Metadata

Phylogenetics

FN ASR ML

Mapping

Cultural

PI

RA1, PhD1
(Computational)

RA2, PhD2
(Cultural)

FN

ASR

ML

= Family Tree/Network

= Ancestral State Reconstruction

= Missing Links

O
U
T
P
U
T
S

L Sympos. 1 Sympos. 2 Conference Exhibition OtherUDII

 GGP system
 Ludemes
 Games + Reconstructions
 Manuals
 Web site
 AI methods

 Proceedings Proceedings Proceedings Catalogue
 Interactive Maps
 Public lectures
 Artefacts
 Displays

 45+ papers
 3 books
 2 PhD theses
 Patents?

Team

Principal Investigator  
• Cameron

 Cultural

Postdoc 
• Hiring now!  
• Historian/anthropologist  
• Advise cultural aspects

 Computational

Postdoc 
• Eric
PhD 
• Dennis

Postdoc 
• Matthew

Eric Piette
• Postdoctoral Researcher
• Digital Ludeme Project

LUDII General Game System

• Play, evaluate, reconstruct
• Full range of traditional games 

Game Database
• Each game:
 – S-expression:  
 – Ludeme tree  
 – Compiles to bytecode
• Tagged historical data

Ludeme Library
• Each ludeme: 

– Java class  
– Meaningful name  
– Tagged with  
 math.keywords

Ludeme
Library

Game
Database

+
Mathematical

Data

+
Historical

Data

Java Project

Core Modules:
1. AI - Default AI agents for playing games in the DB
2. Common - Constants, annotations, etc.
3. Grammar - Generates game grammar from ludemes
4. Library - Ludemes in structured class hierarchy
5. Player - Main play controller (GUI and CLI)
 

Grammar

Library

Player

Core of LUDII: Ludeme Library

Example: Tic-Tac-Toe

Game Database

• Goal: 1,000 representatives games
• Their known variants
• Automatically generated reconstructions 

For now:
• 30 different games
• 80 variants

With:
• 141 kind of rules
• 8 types of board
• 28 types of pieces

LUDII Public Portal

Access games in the database:
• Play AI agents 
• Play other users
• Evaluate rule sets
• AI tournaments  

www.ludii.games 
 
Release:
• Mid-2019?  

http://www.ludii.games/

GUI Examples

Preliminary results
Game Name LUDII GGP-base Rate

8 Puzzle 22,092 4,113 5.4

8 Queens 790,200 1,946 406.1

Breakthrough 2,339 1,123 2.1

Chess 308 0.06 5133.3

Connect 4 83,002 13,664 6.1

Hex 8,857 195 45.4

Knight’s Tour 84,137 75,000 1.1

Lights Out 20,395 11,799 1.7

Peg Solitaire 8,234 3,172 2.6

Reversi 922 203 4.5

Skirmish 429 124 3.5

Sudoku 100,201 635 157.8

Tic-Tac-Toe 693,568 85,319 8.1

Tron 139,273 121,989 1.1

Wolf and Sheep 6,736 5,532 1.2

Playouts per second
 vs
GGP/GDL versions

Dennis Soemers
• PhD Candidate
• Digital Ludeme Project

Features

• Feature ≈ description of action and parts of
the state around it 

• Formally: state-action feature  
– Local  
– Binary

Uses of Features

• Bias play-outs in Monte Carlo Tree Search
- More plausible play-outs
- Better evaluations
- Stronger agent  

• May also be used in different ways
- Bias in Selection phase of MCTS
- Reinforcement Learning with function

approximation
- …

Geometry Independence

• Features should not be game- or board-
specific

• Transfer between 
games / boards

Geometry Independence

• Relative locations given by Walks

Reactive and Proactive Features

• Reactive features respond to last move
• Proactive features apply to entire board

Generating Features

• Handcrafted features
- Not feasible for 1,000 different games 

• Supervised learning from human games
- Previously done in Go (1991), Go (2003),

Go (2005), Go (2006), Go (2007), …
- Still not feasible for 1,000 different games

Generating Features

• Exhaustively generate all features
- LOTS of features
• Learning/mining from self-play games
• Evolutionary algorithms
• …

Generating Features

• Ludemes can help feature generation!

• Transfer useful features between game

• Automatically generate “minimum-required”
patterns for legal moves
- Reduces search space
- Features must have empty position for

recommended action in Hex, Tic Tac Toe, etc.

Understanding Games

• Features do not just improve the AI 

• Features can provide insight into games and
their relations:
- Similar set of features ! related games?
- Similar rules, different features !  

can isolate rules responsible for strategies?
- Features can be linked to ludemes responsible

for their generation

Conclusion

Go
China, 548BC

(Japanese players)

Thank You!
Questions?

http://www.ludeme.eu

D

L

P

igital
udeme
roject

